2 - CALCULOS TOPOMETRICOS

1 - SISTEMA INTERNACIONAL DE UNIDADES

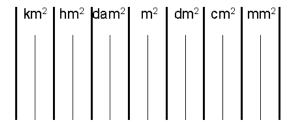
1.1 – Tipos de mediciones

Existen cinco clases de mediciones que forman la base de la topografía plana tradicional:

- Angulos horizontales,
- Distancias horizontales,
- Angulos verticales (o cenitales),
- Distancias verticales,
- Distancias inclinadas.

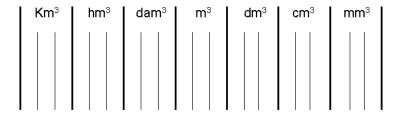
1.2 - Distancias

El **metro** es la unidad básica del sistema métrico. Las subdivisiones del metro (m) son el **milímetro** (mm), el **centímetro** (cm) y el **decímetro** (dm), iguales a 0.001 m, 0.01 m y 0.1 m, respectivamente. Un **kilómetro** (km) es igual a 1000 m.

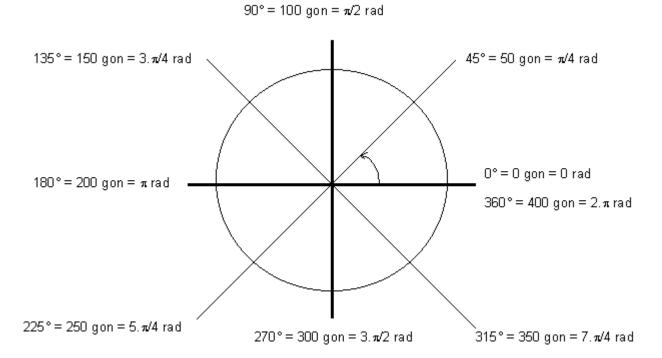

Aplicación: Convertir las longitudes siguientes:

Longitud	Convertir en m	Longitud	Convertir en cm	Longitud	Convertir en km	Longitud	Convertir en mm
130.125 km		130.125 m		130.125 m		130.125 m	
30 cm		30 mm		30 cm		30 cm	
2.5 km		2.5 km		2.5 hm		2.5 km	
2 mm		2 mm		2 mm		2 cm	
1.5 cm		1.5 dm		1.5 cm		1.5 cm	
5.20 dam		5.20 m		5.20 m		5.20 m	
550 dm		550 m		550 m		550 m	

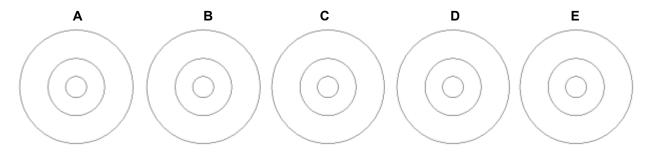
15 mm 15 mm 15 dm


1.3 - Areas

En el sistema métrico, las áreas se especifican usando el metro cuadrado (m²). En áreas grandes, por ejemplo, una extensión de tierra, la superficie se da en hectáreas (ha), donde una hectárea equivale a un cuadrado que tiene lados de 100 metros. Por tanto, se tienen 10 000 m², o aproximadamente 2.471 acres por hectárea.


1.4 – Volúmenes

En el sistema métrico, se utiliza el metro cúbico (m³) para medir volúmenes.


1.5 - Angulos

Los grados, los minutos, los segundos, los radianes y los gones son unidades aceptadas por medir ángulos: $360^{\circ} = 400 \text{ gon} = 2\pi \text{ rad}$

2 - PRECISION DE LOS RESULTADOS

2.1 - Exactitud y Precisión

2.2 - Principio

Los resultados no pueden ser más precisos que los datos.

<u>Ejemplo:</u> Sí Ud. conoce 2 puntos con coordenadas con una precisión centimétrica, no puede dar la distancia entre estos puntos con una precisión milimétrica: es una **falta de razonamiento**.

<u>Observación:</u> Antes de empezar cualquier trabajo topográfico, es primordial conocer las precisiones con las cuales se requiere el mapa, a fin de poder **elegir el método y el aparato de levantamiento**.

2.3 - Resultados intermedios

A fin de guardar la mejora precisión posible durante los cálculos topométricos, se debe utilizar todos los decimales de los resultados intermedios. Para eso, existen diferentes métodos:

- Utilizar un software de cálculo o DAC (Dibujo asistido por Computadora): el cálculo es automático y no se necesita redondear los resultados.
- Utilizar la memoria de la calculadora para evitar la pérdida de precisión:

Min permite borrar la memoria precedente,

M+ permite grabar el valor en memoria,

MR permite utilizar el valor en memoria.

- Utilizar la tecla ANS de la calculadora que guarda el ultimo resultado calculado.
- Otros valores (como la tecla PI π) pueden ser utilizados para guardar una buena precisión.

2.4 - Controles

Un trabajo puede ser preciso sin ser exacto. Para asegurarse de la exactitud de un trabajo topográfico, existen diferentes maneras de control, cuyas principales son:

- Doblar las medidas en el campo para hacer comprobaciones,
- Comprobar los cálculos por constataciones lógicas,
- Comprobar los cálculos con las unidades (obtener una longitud en metro y no en grado),
- Dibujar a escala puede ser también un excelente control.

El **control** de las medidas debe ser la **filosofía** básica del topógrafo y del técnico del campo. En buenos levantamientos topográficos, la precisión y la exactitud siempre son fundamentales.

3 - REDONDEO DE NUMEROS

3.1 - Definición

Redondear un número es el proceso de suprimir uno o más decimales para que la respuesta sólo contenga aquellos que sean significativos o necesarios en cálculos subsecuentes.

3.2 - Convención

Por convención, un número es redondeado:

- al valor inferior cuando la última decimal es 0, 1, 2, 3, o 4
- al valor superior cuando la última decimal es 5, 6, 7, 8 o 9

Ejemplos:

- 78.6739 se redondea con 3 decimales a 78.674
- 78.6739 se redondea con 2 decimales a 78.67
- 78.6739 se redondea con 1 decimal a 78.7
- 78.6739 se redondea sin decimales a 79

<u>Cuidado:</u> Si un número es redondeado una primera vez (por ejemplo 12.48 redondeado a 12.5), y luego una segunda vez (12.5 es redondeado a 13), comete un error puesto que 12.48 esta más cercano de 12 que de 13. Hay que siempre volver al número exacto para hacer un redondeo.

Ejemplo: 78.3749 se redondea en 78.375, y luego este 78.375 se redondea en 78.37 (y no 78.38)

Aplicación: Redondear los valores siguientes:

Valor	Redondear con 2 decimales	Valor	Redondear con 1 decimal	Valor	Redondear con ningún decimal
13.256		14.96		16.85	
25.365		33.333		0.519	
2.1111		9.909		21.789	
6.0195		4.565		29.501	
7.8905		10.949		33.499	
36.666		7.85		1.179	
47.765		0.12		0.65	
40.1449		100.987		99.60	
0.004		24.048		18.5	